Serret-Frenet Formulae for Null Quaternionic Curves in Semi Euclidean 4-Space ℝ41

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quaternionic Curves in the Semi-Euclidean Space E_4_2

In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.

متن کامل

On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated. Keywords—Lorentzian 5-space; Frenet-Serret Invariants; Nonnull Curves.

متن کامل

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

Velocity Distribution Profile for Robot Arm Motion Using Rational Frenet-Serret Curves

The aim of this paper is to demonstrate that the techniques of Computer Aided Geometric Design such as spatial rational curves and surfaces could be applied to Kinematics, Computer Animation and Robotics. For this purpose we represent a method which utilizes a special class of rational curves called Rational Frenet–Serret (RF) curves for robot trajectory planning. RF curves distinguished by the...

متن کامل

The Frenet Serret Description of Gyroscopic Precession

The phenomenon of gyroscopic precession is studied within the framework of Frenet-Serret formalism adapted to quasi-Killing trajectories. Its relation to the congruence vorticity is highlighted with particular reference to the irrotational congruence admitted by the stationary, axisymmetric spacetime. General precession formulae are obtained for circular orbits with arbitrary constant angular s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Physica Polonica A

سال: 2015

ISSN: 0587-4246,1898-794X

DOI: 10.12693/aphyspola.128.b-293